Locating real eigenvalues of a spectral problem in fluid-solid type structures
Voss, Heinrich
J. Appl. Math., Tome 2005 (2005) no. 1, p. 37-48 / Harvested from Project Euclid
Exploiting minmax characterizations for nonlinear and nonoverdamped eigenvalue problems, we prove the existence of a countable set of eigenvalues converging to $\infty$ and inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in an incompressible viscous fluid. The paper demonstrates that the variational characterization of eigenvalues is a powerful tool for studying nonoverdamped eigenproblems, and that the appropriate enumeration of the eigenvalues is of predominant importance, whereas the natural ordering of the eigenvalues may yield false conclusions.
Publié le : 2005-02-16
Classification: 
@article{1113922283,
     author = {Voss, Heinrich},
     title = {Locating real eigenvalues of a spectral problem in fluid-solid type structures},
     journal = {J. Appl. Math.},
     volume = {2005},
     number = {1},
     year = {2005},
     pages = { 37-48},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1113922283}
}
Voss, Heinrich. Locating real eigenvalues of a spectral problem in fluid-solid type structures. J. Appl. Math., Tome 2005 (2005) no. 1, pp.  37-48. http://gdmltest.u-ga.fr/item/1113922283/