Global solutions of a strongly coupled reaction-diffusion system with different diffusion coefficients
Somathilake, L. W. ; Peiris, J. M. J. J.
J. Appl. Math., Tome 2005 (2005) no. 1, p. 23-36 / Harvested from Project Euclid
We deal with a mathematical model for a four-component chemical reaction-diffusion process. The model is described by a system of strongly coupled reaction-diffusion equations with different diffusion rates. The existence of the global solution of this reaction-diffusion system in unbounded domain is proved by using semigroup theory and estimates on the growth of solutions.
Publié le : 2005-02-16
Classification: 
@article{1113922282,
     author = {Somathilake, L. W. and Peiris, J. M. J. J.},
     title = {Global solutions of a strongly coupled reaction-diffusion system with different diffusion coefficients},
     journal = {J. Appl. Math.},
     volume = {2005},
     number = {1},
     year = {2005},
     pages = { 23-36},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1113922282}
}
Somathilake, L. W.; Peiris, J. M. J. J. Global solutions of a strongly coupled reaction-diffusion system with different diffusion coefficients. J. Appl. Math., Tome 2005 (2005) no. 1, pp.  23-36. http://gdmltest.u-ga.fr/item/1113922282/