Nonexistence of weak solutions for evolution problems on $\R^n$
Hakem, Alin
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, p. 73-82 / Harvested from Project Euclid
We study the nonexistence of global weak solutions for equations of the following type: \begin{equation} u_{tt}-\Delta\ u +g(t)\ u_t=|u|^p \label{*} \end{equation} where $g(t)$ behaves like $t^{\beta},\ 0\leq\beta< 1$. Then the situation is extended to systems of equations of the same type, and more general equation than $(\ref{*})$.
Publié le : 2005-04-14
Classification:  blow-up,  critical exponent,  35K22,  35K55,  35L60,  35B33
@article{1113318131,
     author = {Hakem, Alin},
     title = {Nonexistence of weak solutions for evolution problems on $\R^n$},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {5},
     year = {2005},
     pages = { 73-82},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1113318131}
}
Hakem, Alin. Nonexistence of weak solutions for evolution problems on $\R^n$. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, pp.  73-82. http://gdmltest.u-ga.fr/item/1113318131/