We study the nonexistence of global weak solutions for equations of the
following type:
\begin{equation}
u_{tt}-\Delta\ u +g(t)\ u_t=|u|^p
\label{*}
\end{equation}
where $g(t)$ behaves like $t^{\beta},\ 0\leq\beta< 1$. Then the situation is
extended to systems of equations of the same type, and more general equation
than $(\ref{*})$.
@article{1113318131,
author = {Hakem, Alin},
title = {Nonexistence of weak solutions for evolution problems on $\R^n$},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {11},
number = {5},
year = {2005},
pages = { 73-82},
language = {en},
url = {http://dml.mathdoc.fr/item/1113318131}
}
Hakem, Alin. Nonexistence of weak solutions for evolution problems on $\R^n$. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, pp. 73-82. http://gdmltest.u-ga.fr/item/1113318131/