On the smallest abundant number not divisible by the first $k$ primes
Iannucci, Douglas E.
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, p. 39-44 / Harvested from Project Euclid
We say a positive integer $n$ is abundant if $\sigma(n)>2n$, where $\sigma(n)$ denotes the sum of the positive divisors of $n$. Number the primes in ascending order: $p_1=2$, $p_2=3$, and so forth. Let $A(k)$ denote the smallest abundant number not divisible by $p_1$, $p_2$, \dots, $p_k$. In this paper we find $A(k)$ for $1\leq k\leq 7$, and we show that for all $\epsilon>0$, $(1-\epsilon)(k\ln{k})^{2-\epsilon}<\ln{A(k)}<(1+\epsilon)(k\ln{k})^{2 +\epsilon}$ for all sufficiently large $k$.
Publié le : 2005-04-14
Classification:  abundant numbers,  primes,  11A32,  11Y70
@article{1113318127,
     author = {Iannucci, Douglas E.},
     title = {On the smallest abundant number not divisible by the first $k$ primes},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {5},
     year = {2005},
     pages = { 39-44},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1113318127}
}
Iannucci, Douglas E. On the smallest abundant number not divisible by the first $k$ primes. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, pp.  39-44. http://gdmltest.u-ga.fr/item/1113318127/