The Fundamental Solution of the Hyperbolic Dirac Operator on $\mathbb{R}^{1,m}$ : a new approach
Eelbode, D. ; Sommen, F.
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, p. 23-37 / Harvested from Project Euclid
In this paper, the fundamental solution of the Dirac equation on hyperbolic space will be calculated by means of the fundamental solution for the wave-operator in the $(m+1)$-dimensional Minkowski space-time of signature $(1,m)$. This leads to addition formulas for the fundamental solution in terms of the solution in a lower-dimensional Minkowski space-time. Certain identities between hypergeometric functions can then be used to obtain a closed form for the fundamental solution of the Dirac equation.
Publié le : 2005-04-14
Classification:  Clifford analysis,  hyperbolic space,  hypergeometric functions,  30G35,  33C05,  46F10
@article{1113318126,
     author = {Eelbode, D. and Sommen, F.},
     title = {The Fundamental Solution of the Hyperbolic Dirac Operator on
$\mathbb{R}^{1,m}$ : a new approach},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {5},
     year = {2005},
     pages = { 23-37},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1113318126}
}
Eelbode, D.; Sommen, F. The Fundamental Solution of the Hyperbolic Dirac Operator on
$\mathbb{R}^{1,m}$ : a new approach. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, pp.  23-37. http://gdmltest.u-ga.fr/item/1113318126/