Biharmonic capacity and the stability of minimal Lagrangian submanifolds
Palmer, Bennett
Tohoku Math. J. (2), Tome 55 (2003) no. 2, p. 529-541 / Harvested from Project Euclid
We study the eigenvalues of the biharmonic operators and the buckling eigenvalue on complete, open Riemannian manifolds. We show that the first eigenvalue of the biharmonic operator on a complete, parabolic Riemannian manifold is zero. We give a generalization of the buckling eigenvalue and give applications to studying the stability of minimal Lagrangian submanifolds in Kähler manifolds.
Publié le : 2003-12-14
Classification:  Minimal Lagrangian submanifold,  buckling eigenvalue,  53C42,  53D12,  58E12
@article{1113247128,
     author = {Palmer, Bennett},
     title = {Biharmonic capacity and the stability of minimal Lagrangian submanifolds},
     journal = {Tohoku Math. J. (2)},
     volume = {55},
     number = {2},
     year = {2003},
     pages = { 529-541},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1113247128}
}
Palmer, Bennett. Biharmonic capacity and the stability of minimal Lagrangian submanifolds. Tohoku Math. J. (2), Tome 55 (2003) no. 2, pp.  529-541. http://gdmltest.u-ga.fr/item/1113247128/