Matrix Integrals and Feynman Diagrams in the Kontsevich Model
Fiorenza, Domenico ; Murri, Riccardo
Adv. Theor. Math. Phys., Tome 7 (2003) no. 5, p. 525-576 / Harvested from Project Euclid
We review some relations occurring between the combinatorial intersection theory on the moduli spaces of stable curves and the asymptotic behavior of the 't Hooft-Kontsevich matrix integrals. In particular, we give an alternative proof of the Witten-Di~Francesco-Itzykson-Zuber theorem ---which expresses derivatives of the partition function of intersection numbers as matrix integrals--- using techniques based on diagrammatic calculus and combinatorial relations among intersection numbers. These techniques extend to a more general interaction potential.
Publié le : 2003-05-14
Classification: 
@article{1112627377,
     author = {Fiorenza, Domenico and Murri, Riccardo},
     title = {Matrix Integrals and Feynman Diagrams in the Kontsevich Model},
     journal = {Adv. Theor. Math. Phys.},
     volume = {7},
     number = {5},
     year = {2003},
     pages = { 525-576},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1112627377}
}
Fiorenza, Domenico; Murri, Riccardo. Matrix Integrals and Feynman Diagrams in the Kontsevich Model. Adv. Theor. Math. Phys., Tome 7 (2003) no. 5, pp.  525-576. http://gdmltest.u-ga.fr/item/1112627377/