On Cauchy-Riemann circle bundles
Ciampa, Donato Antonio
Kodai Math. J., Tome 28 (2005) no. 1, p. 146-180 / Harvested from Project Euclid
Building on ideas of R. Mizner, [17] - [18], and C. Laurent-Thiébaut, [14], we study the CR geometry of real orientable hypersurfaces of a Sasakian manifold. These are shown to be CR manifolds of CR codimension two and to possess a canonical connection D (parallelizing the maximally complex distribution) similar to the Tanaka-Webster connection (cf. [21]) in pseudohermitian geometry. Examples arise as circle subbundles $S^1 \to N \stackrel{\pi}{\rightarrow} M$ , of the Hopf fibration, over a real hypersurface M in the complex projective space. Exploiting the relationship between the second fundamental forms of the immersions N → S2n+1 and M → CPn and a horizontal lifting technique we prove a CR extension theorem for CR functions on N. Under suitable assumptions [ $\mathrm{Ric}_D(Z,\overline{Z})+2g(Z,(I-a)\overline{Z})\geq 0$ , $Z \in T_{1,0}(N)$ , where a is the Weingarten operator of the immersion N → S2n+1] on the Ricci curvature RicD of D, we show that the first Kohn-Rossi cohomology group of M vanishes. We show that whenever $\mathrm{Ric}_D(Z,\overline{W})-2g(Z,\overline{W})=(\mu \circ \pi)g(Z,\overline{W})$ for some $\mu \in C^\infty (M)$ , M is a pseudo-Einstein manifold.
Publié le : 2005-03-14
Classification: 
@article{1111588043,
     author = {Ciampa, Donato Antonio},
     title = {On Cauchy-Riemann circle bundles},
     journal = {Kodai Math. J.},
     volume = {28},
     number = {1},
     year = {2005},
     pages = { 146-180},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1111588043}
}
Ciampa, Donato Antonio. On Cauchy-Riemann circle bundles. Kodai Math. J., Tome 28 (2005) no. 1, pp.  146-180. http://gdmltest.u-ga.fr/item/1111588043/