(0,2) Duality
Adams, Allan ; Basu, Anirban ; Sethi, Savdeep
Adv. Theor. Math. Phys., Tome 7 (2003) no. 5, p. 865-950 / Harvested from Project Euclid
We construct dual descriptions of (0, 2) gauged linear sigma models. In some cases, the dual is a (0, 2) Landau-Ginzburg theory, while in other cases, it is a non-linear sigma model. The duality map defines an analogue of mirror symmetry for (0, 2) theories. Using the dual description, we determine the instanton corrected chiral ring for some illustrative examples. This ring defines a (0, 2) generalization of the quantum cohomology ring of (2, 2) theories.
Publié le : 2003-09-14
Classification: 
@article{1111510433,
     author = {Adams, Allan and Basu, Anirban and Sethi, Savdeep},
     title = {(0,2) Duality},
     journal = {Adv. Theor. Math. Phys.},
     volume = {7},
     number = {5},
     year = {2003},
     pages = { 865-950},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1111510433}
}
Adams, Allan; Basu, Anirban; Sethi, Savdeep. (0,2) Duality. Adv. Theor. Math. Phys., Tome 7 (2003) no. 5, pp.  865-950. http://gdmltest.u-ga.fr/item/1111510433/