Integral formulas for hypermonogenic functions
Eriksson, Sirkka-Liisa
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, p. 705-718 / Harvested from Project Euclid
Let $C\ell_{n}$ be the (universal) Clifford algebra generated by $e_{1},...,e_{n}$ satisfying $e_{i}e_{j}+e_{j}e_{i}=-2\delta_{ij}$, $i,j=1,...,n$. The Dirac operator in $C\ell_{n}$ is defined by $D=\sum_{i=0}^{n}e_{i}\frac{\partial}{\partial x_{i}}$, where $e_{0}=1$. The modified Dirac operator is introduced for $k\in\mathbb{R}$ by $M_{k}f=Df+k\frac{Q^{\prime}f}{x_{n}}$, where $^{\prime}$ is the main involution and $Qf$ is given by the decomposition $f\left( x\right) =Pf\left( x\right) +Qf\left( x\right) e_{n}$ with $Pf\left( x\right) ,Qf\left( x\right) \in C\ell_{n-1}$. A continuously differentiable function $f:\Omega\rightarrow C\ell_{n}$ is called $k$-hypermonogenic in an open subset $\Omega$ of $\mathbb{R}^{n+1}$, if $M_{k}f\left( x\right) =0$ outside the hyperplane $x_{n}=0$. Note that $0$-hypermonogenic functions are monogenic and $n-1$-hypermonogenic functions are hypermonogenic defined by the author and H. Leutwiler in [10]. The power function $x^{m}$ is hypermonogenic. We prove integral formulas of hypermogenic functions.
Publié le : 2005-03-14
Classification:  Monogenic,  hypermonogenic,  Dirac operator,  hyperbolic metric,  30G35,  30A05,  30F45
@article{1110205628,
     author = {Eriksson, Sirkka-Liisa},
     title = {Integral formulas for hypermonogenic functions},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {5},
     year = {2005},
     pages = { 705-718},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1110205628}
}
Eriksson, Sirkka-Liisa. Integral formulas for hypermonogenic functions. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, pp.  705-718. http://gdmltest.u-ga.fr/item/1110205628/