This paper concentrates on the homogeneous (conformal) model of
Euclidean space (Horosphere) with subspaces that intuitively
correspond to Euclidean geometric objects in three dimensions.
Mathematical details of the construction and (useful) parametrizations of the 3D
Euclidean object models are explicitly demonstrated in order to show how
3D Euclidean information on positions, orientations and radii can be extracted.
Publié le : 2005-03-14
Classification:
Clifford algebra,
geometric algebra,
Horosphere,
position,
orientation,
radius,
3D Euclidean object modeling,
15A66,
51M15,
51M25
@article{1110205625,
author = {Hitzer, Eckhard M.S.},
title = {Euclidean Geometric Objects in the Clifford Geometric Algebra of {Origin, 3-Space, Infinity}},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {11},
number = {5},
year = {2005},
pages = { 653-662},
language = {en},
url = {http://dml.mathdoc.fr/item/1110205625}
}
Hitzer, Eckhard M.S. Euclidean Geometric Objects in the Clifford Geometric Algebra of {Origin, 3-Space, Infinity}. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2005) no. 5, pp. 653-662. http://gdmltest.u-ga.fr/item/1110205625/