A strong invariance principle for associated random fields
Balan, Raluca M.
Ann. Probab., Tome 33 (2005) no. 1, p. 823-840 / Harvested from Project Euclid
In this paper we generalize Yu’s [Ann. Probab. 24 (1996) 2079–2097] strong invariance principle for associated sequences to the multi-parameter case, under the assumption that the covariance coefficient u(n) decays exponentially as n→∞. The main tools that we use are the following: the Berkes and Morrow [Z. Wahrsch. Verw. Gebiete 57 (1981) 15–37] multi-parameter blocking technique, the Csörgő and Révész [Z. Wahrsch. Verw. Gebiete 31 (1975) 255–260] quantile transform method and the Bulinski [Theory Probab. Appl. 40 (1995) 136–144] rate of convergence in the CLT.
Publié le : 2005-03-14
Classification:  Strong invariance principle,  associated random fields,  blocking technique,  quantile transform,  60F17,  60G60,  60K35
@article{1109868602,
     author = {Balan, Raluca M.},
     title = {A strong invariance principle for associated random fields},
     journal = {Ann. Probab.},
     volume = {33},
     number = {1},
     year = {2005},
     pages = { 823-840},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1109868602}
}
Balan, Raluca M. A strong invariance principle for associated random fields. Ann. Probab., Tome 33 (2005) no. 1, pp.  823-840. http://gdmltest.u-ga.fr/item/1109868602/