Simultaneous Generation of Koecher and Almkvist-Granville's Apéry-Like Formulae
Rivoal, T.
Experiment. Math., Tome 13 (2004) no. 1, p. 503-508 / Harvested from Project Euclid
We prove a very general identity, conjectured by Henri Cohen, involving the generating function of the family {\small $(\zeta(2r+4s+3))_{r,s\ge 0}$}: it unifies two identities, proved by Koecher in 1980 and Almkvist and Granville in 1999, for the generating functions of {\small $(\zeta(2r+3))_{r\ge 0}$} and {\small $(\zeta(4s+3))_{s\ge 0}$}, respectively. As a consequence, we obtain that, for any integer {\small $j \ge 0$}, there exists at least {\small $[j/2]+1$ } Apéry-like formulae for {\small $\zeta(2j+3)$}.
Publié le : 2004-05-14
Classification:  Riemann zeta function,  Apéry-like series,  generating functions,  11M06,  05A15,  11J72
@article{1109106442,
     author = {Rivoal, T.},
     title = {Simultaneous Generation of Koecher and Almkvist-Granville's Ap\'ery-Like Formulae},
     journal = {Experiment. Math.},
     volume = {13},
     number = {1},
     year = {2004},
     pages = { 503-508},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1109106442}
}
Rivoal, T. Simultaneous Generation of Koecher and Almkvist-Granville's Apéry-Like Formulae. Experiment. Math., Tome 13 (2004) no. 1, pp.  503-508. http://gdmltest.u-ga.fr/item/1109106442/