On the Order of the Mertens Function
Kotnik, Tadej ; van de Lune, Jan
Experiment. Math., Tome 13 (2004) no. 1, p. 473-481 / Harvested from Project Euclid
We describe a numerical experiment concerning the order of magnitude of {\small $% q(x):=M\left( x\right) /\sqrt{x}$}, where {\small $M(x)$} is the Mertens function (the summatory function of the Möbius function). It is known that, if the Riemann hypothesis is true and all nontrivial zeros of the Riemann zeta-function are simple, {\small $q(x)$} can be approximated by a series of trigonometric functions of {\small $\log x$}. We try to obtain an {\small $\Omega $}-estimate of the order of {\small $q(x)$} by searching for increasingly large extrema of the sum of the first {\small $10^{2}$, $10^{4}$}, and {\small $10^{6}$} terms of this series. Based on the extrema found in the range {\small $10^{4}\leq x\leq 10^{10^{10}}$} we conjecture that {\small $q(x)=\Omega _{\pm }(\sqrt{\log \log \log x})$}.
Publié le : 2004-05-14
Classification:  Mertens function,  Möbius function,  Mertens hypothesis,  11N56,  11Y35,  11-04
@article{1109106439,
     author = {Kotnik, Tadej and van de Lune, Jan},
     title = {On the Order of the Mertens Function},
     journal = {Experiment. Math.},
     volume = {13},
     number = {1},
     year = {2004},
     pages = { 473-481},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1109106439}
}
Kotnik, Tadej; van de Lune, Jan. On the Order of the Mertens Function. Experiment. Math., Tome 13 (2004) no. 1, pp.  473-481. http://gdmltest.u-ga.fr/item/1109106439/