An Algorithm for Finding the Veech Group of an Origami
Schmithüsen, Gabriela
Experiment. Math., Tome 13 (2004) no. 1, p. 459-472 / Harvested from Project Euclid
We study the Veech group of an origami, i.e., of a translation surface, tessellated by parallelograms. We show that it is isomorphic to the image of a certain subgroup of {\small $\aut^+(F_2)$ in $\slzwei(\ZZ) \cong \out^+(F_2)$}. Based on this, we present an algorithm that determines the Veech group.
Publié le : 2004-05-14
Classification:  Teichmüller curves,  Veech groups,  Origami,  14H10,  14H30,  53C10
@article{1109106438,
     author = {Schmith\"usen, Gabriela},
     title = {An Algorithm for Finding the Veech Group of an Origami},
     journal = {Experiment. Math.},
     volume = {13},
     number = {1},
     year = {2004},
     pages = { 459-472},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1109106438}
}
Schmithüsen, Gabriela. An Algorithm for Finding the Veech Group of an Origami. Experiment. Math., Tome 13 (2004) no. 1, pp.  459-472. http://gdmltest.u-ga.fr/item/1109106438/