Testing the Logarithmic Comparison Theorem for Free Divisors
Castro-Jiménez, F. J. ; Ucha-Enríquez, J. M.
Experiment. Math., Tome 13 (2004) no. 1, p. 441-449 / Harvested from Project Euclid
We propose in this work a computational criterion to test if a free divisor {\small $D\subset {\bf C}^n$} verifies the Logarithmic Comparison Theorem (LCT); that is, whether the complex of logarithmic differential forms computes the cohomology of the complement of {\small $D$} in {\small ${\bf C}^n$}. ¶ For Spencer free divisors {\small $D\equiv(f=0)$}, we solve a conjecture about the generators of the annihilating ideal of {\small $1/f$} and make a conjecture on the nature of Euler homogeneous free divisors which verify LCT. In addition, we provide examples of free divisors defined by weighted homogeneous polynomials that are not locally quasi-homogeneous.
Publié le : 2004-05-14
Classification:  de Rham cohomology,  Logarithmic Comparison Theorem,  free divisors,  Gröbner bases,  14F50,  32C38,  32C35,  13Pxx,  68W30
@article{1109106436,
     author = {Castro-Jim\'enez, F. J. and Ucha-Enr\'\i quez, J. M.},
     title = {Testing the Logarithmic Comparison Theorem for Free Divisors},
     journal = {Experiment. Math.},
     volume = {13},
     number = {1},
     year = {2004},
     pages = { 441-449},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1109106436}
}
Castro-Jiménez, F. J.; Ucha-Enríquez, J. M. Testing the Logarithmic Comparison Theorem for Free Divisors. Experiment. Math., Tome 13 (2004) no. 1, pp.  441-449. http://gdmltest.u-ga.fr/item/1109106436/