Precise asymptotics of small eigenvalues of reversible diffusions in the metastable regime
Eckhoff, Michael
Ann. Probab., Tome 33 (2005) no. 1, p. 244-299 / Harvested from Project Euclid
We investigate the close connection between metastability of the reversible diffusion process X defined by the stochastic differential equation ¶ \[dX_{t}=-\nabla F(X_{t})\,dt+\sqrt{2\varepsilon }\,dW_{t},\qquad \varepsilon >0,\] ¶ and the spectrum near zero of its generator −Lɛ≡ɛΔ−∇F⋅∇, where F:ℝd→ℝ and W denotes Brownian motion on ℝd. For generic F to each local minimum of F there corresponds a metastable state. We prove that the distribution of its rescaled relaxation time converges to the exponential distribution as ɛ↓0 with optimal and uniform error estimates. Each metastable state can be viewed as an eigenstate of Lɛ with eigenvalue which converges to zero exponentially fast in 1/ɛ. Modulo errors of exponentially small order in 1/ɛ this eigenvalue is given as the inverse of the expected metastable relaxation time. The eigenstate is highly concentrated in the basin of attraction of the corresponding trap.
Publié le : 2005-01-14
Classification:  Capacity,  eigenvalue problem,  exit problem,  exponential distribution,  diffusion process,  ground-state splitting,  large deviations,  metastability,  relaxation time,  reversibility,  potential theory,  Perron–Frobenius eigenvalues,  semiclassical limit,  Witten’s Laplace,  60J60,  35P20,  31C15,  31C05,  35P15,  58J50,  58J37,  60F10,  60F05
@article{1108141727,
     author = {Eckhoff, Michael},
     title = {Precise asymptotics of small eigenvalues of reversible diffusions in the metastable regime},
     journal = {Ann. Probab.},
     volume = {33},
     number = {1},
     year = {2005},
     pages = { 244-299},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1108141727}
}
Eckhoff, Michael. Precise asymptotics of small eigenvalues of reversible diffusions in the metastable regime. Ann. Probab., Tome 33 (2005) no. 1, pp.  244-299. http://gdmltest.u-ga.fr/item/1108141727/