Hitting times for special patterns in the symmetric exclusion process on ℤ d
Asselah, Amine ; Pra, Paolo Dai
Ann. Probab., Tome 32 (2004) no. 1A, p. 3301-3323 / Harvested from Project Euclid
We consider the symmetric exclusion process {ηt,t>0} on {0,1}d. We fix a pattern ${\mathcal{A}}:=\{\eta\dvtx \sum_{\Lambda}\eta(i)\ge k\}$ , where Λ is a finite subset of ℤd and k is an integer, and we consider the problem of establishing sharp estimates for τ, the hitting time of ${\mathcal{A}}$ . We present a novel argument based on monotonicity which helps in some cases to obtain sharp tail asymptotics for τ in a simple way. Also, we characterize the trajectories {ηs,s≤t} conditioned on {τ>t}.
Publié le : 2004-10-14
Classification:  Quasistationary measures,  attractive processes,  hitting times,  Yaglom limit,  h process,  60K35,  82C22,  60J25
@article{1107883354,
     author = {Asselah, Amine and Pra, Paolo Dai},
     title = {Hitting times for special patterns in the symmetric exclusion process on $\mathbb{Z}$<sup>
 d
</sup>},
     journal = {Ann. Probab.},
     volume = {32},
     number = {1A},
     year = {2004},
     pages = { 3301-3323},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1107883354}
}
Asselah, Amine; Pra, Paolo Dai. Hitting times for special patterns in the symmetric exclusion process on ℤ
 d
. Ann. Probab., Tome 32 (2004) no. 1A, pp.  3301-3323. http://gdmltest.u-ga.fr/item/1107883354/