Random walks on supercritical percolation clusters
Barlow, Martin T.
Ann. Probab., Tome 32 (2004) no. 1A, p. 3024-3084 / Harvested from Project Euclid
We obtain Gaussian upper and lower bounds on the transition density qt(x,y) of the continuous time simple random walk on a supercritical percolation cluster ${\mathcal{C}}_{\infty}$ in the Euclidean lattice. The bounds, analogous to Aronsen’s bounds for uniformly elliptic divergence form diffusions, hold with constants ci depending only on p (the percolation probability) and d. The irregular nature of the medium means that the bound for qt(x,⋅) holds only for t≥Sx(ω), where the constant Sx(ω) depends on the percolation configuration ω.
Publié le : 2004-10-14
Classification:  Percolation,  random walk,  heat kernel,  60K37,  58J35
@article{1107883346,
     author = {Barlow, Martin T.},
     title = {Random walks on supercritical percolation clusters},
     journal = {Ann. Probab.},
     volume = {32},
     number = {1A},
     year = {2004},
     pages = { 3024-3084},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1107883346}
}
Barlow, Martin T. Random walks on supercritical percolation clusters. Ann. Probab., Tome 32 (2004) no. 1A, pp.  3024-3084. http://gdmltest.u-ga.fr/item/1107883346/