On Kueker simple theories
Shami, Ziv
J. Symbolic Logic, Tome 70 (2005) no. 1, p. 216-222 / Harvested from Project Euclid
We show that a Kueker simple theory eliminates ∃ and densely interprets weakly minimal formulas. As part of the proof we generalize Hrushovski's dichotomy for almost complete formulas to simple theories. We conclude that in a unidimensional simple theory an almost-complete formula is either weakly minimal or trivially-almost-complete. We also observe that a small unidimensional simple theory is supersimple of finite SU-rank.
Publié le : 2005-03-14
Classification: 
@article{1107298516,
     author = {Shami, Ziv},
     title = {On Kueker simple theories},
     journal = {J. Symbolic Logic},
     volume = {70},
     number = {1},
     year = {2005},
     pages = { 216-222},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1107298516}
}
Shami, Ziv. On Kueker simple theories. J. Symbolic Logic, Tome 70 (2005) no. 1, pp.  216-222. http://gdmltest.u-ga.fr/item/1107298516/