A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains
Cavazos-Cadena, Rolando ; Hernández-Hernández, Daniel
Ann. Appl. Probab., Tome 15 (2005) no. 1A, p. 175-212 / Harvested from Project Euclid
This work concerns controlled Markov chains with finite state and action spaces. The transition law satisfies the simultaneous Doeblin condition, and the performance of a control policy is measured by the (long-run) risk-sensitive average cost criterion associated to a positive, but otherwise arbitrary, risk sensitivity coefficient. Within this context, the optimal risk-sensitive average cost is characterized via a minimization problem in a finite-dimensional Euclidean space.
Publié le : 2005-02-14
Classification:  Decreasing function along trajectories,  stopping time,  nearly optimal policies,  Hölder’s inequality,  simultaneous Doeblin condition,  recurrent state,  93E20,  60F10,  93C55
@article{1106922326,
     author = {Cavazos-Cadena, Rolando and Hern\'andez-Hern\'andez, Daniel},
     title = {A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains},
     journal = {Ann. Appl. Probab.},
     volume = {15},
     number = {1A},
     year = {2005},
     pages = { 175-212},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1106922326}
}
Cavazos-Cadena, Rolando; Hernández-Hernández, Daniel. A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains. Ann. Appl. Probab., Tome 15 (2005) no. 1A, pp.  175-212. http://gdmltest.u-ga.fr/item/1106922326/