On the Ramanujan AGM Fraction, I: The Real-Parameter Case
Borwein, J. ; Crandall, R. ; Fee, G.
Experiment. Math., Tome 13 (2004) no. 1, p. 275-285 / Harvested from Project Euclid
The Ramanujan AGM continued fraction is a construct {\small $${\cal R}_\eta(a,b) =\,\frac{a}{\displaystyle \eta+\frac{b^2}{\displaystyle \eta +\frac{4a^2}{\displaystyle \eta+\frac{9b^2}{\displaystyle \eta+{}_{\ddots}}}}}$$} ¶ enjoying attractive algebraic properties, such as a striking arithmetic-geometric mean (AGM) relation and elegant connections with elliptic-function theory. But the fraction also presents an intriguing computational challenge. Herein we show how to rapidly evaluate ${\cal R}$ for any triple of positive reals $a,b,\eta$. Even in the problematic scenario when $a \approx b$ certain transformations allow rapid evaluation. In this process we find, for example, that when $a\eta = b\eta = $ a rational number, ${\cal R}_\eta$ is essentially an $L$-series that can be cast as a finite sum of fundamental numbers. We ultimately exhibit an algorithm that yields $D$ good digits of ${\cal R}$ in $O(D)$ iterations where the implied big-$O$ constant is independent of the positive-real triple $a,b,\eta$. Finally, we address the evidently profound theoretical and computational dilemmas attendant on complex parameters, indicating how one might extend the AGM relation for complex parameter domains.
Publié le : 2004-05-14
Classification:  Continued fractions,  theta functions,  elliptic integrals,  hypergeometric functions,  special functions,  44-A20,  33C05,  11J70
@article{1103749836,
     author = {Borwein, J. and Crandall, R. and Fee, G.},
     title = {On the Ramanujan AGM Fraction, I: The Real-Parameter Case},
     journal = {Experiment. Math.},
     volume = {13},
     number = {1},
     year = {2004},
     pages = { 275-285},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1103749836}
}
Borwein, J.; Crandall, R.; Fee, G. On the Ramanujan AGM Fraction, I: The Real-Parameter Case. Experiment. Math., Tome 13 (2004) no. 1, pp.  275-285. http://gdmltest.u-ga.fr/item/1103749836/