Strong asymptotics for $L_{p}$ extremal polynomials off a complex curve
Khaldi, Rabah
J. Appl. Math., Tome 2004 (2004) no. 1, p. 371-378 / Harvested from Project Euclid
We study the asymptotic behavior of $L_{p}(\sigma)$ extremal polynomials with respect to a measure of the form $\sigma =\alpha +\gamma$ , where $\alpha$ is a measure concentrated on a rectifiable Jordan curve in the complex plane and $\gamma$ is a discrete measure concentrated on an infinite number of mass points.
Publié le : 2004-11-18
Classification:  42C05,  30E15,  30E10
@article{1102957008,
     author = {Khaldi, Rabah},
     title = {Strong asymptotics for $L\_{p}$
extremal polynomials off a complex curve},
     journal = {J. Appl. Math.},
     volume = {2004},
     number = {1},
     year = {2004},
     pages = { 371-378},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1102957008}
}
Khaldi, Rabah. Strong asymptotics for $L_{p}$
extremal polynomials off a complex curve. J. Appl. Math., Tome 2004 (2004) no. 1, pp.  371-378. http://gdmltest.u-ga.fr/item/1102957008/