Alternative rings whose symmetric elements are nilpotent or a right multiple is a symmetric idempotent.
Wene, G. P.
Pacific J. Math., Tome 91 (1980) no. 2, p. 483-492 / Harvested from Project Euclid
Publié le : 1980-05-14
Classification:  17D05
@article{1102779003,
     author = {Wene, G. P.},
     title = {Alternative rings whose symmetric elements are nilpotent or a right multiple is a symmetric idempotent.},
     journal = {Pacific J. Math.},
     volume = {91},
     number = {2},
     year = {1980},
     pages = { 483-492},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1102779003}
}
Wene, G. P. Alternative rings whose symmetric elements are nilpotent or a right multiple is a symmetric idempotent.. Pacific J. Math., Tome 91 (1980) no. 2, pp.  483-492. http://gdmltest.u-ga.fr/item/1102779003/