On the Cayley graph of a generic finitely presented group
Arzhantseva, G. N. ; Cherix, P.-A.
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, p. 589-601 / Harvested from Project Euclid
We prove that in a certain statistical sense the Cayley graph of almost every finitely presented group with $m\ge 2$ generators contains a subdivision of the complete graph on $l\le 2m+1$ vertices. In particular, this Cayley graph is non planar. We also show that some group constructions preserve the planarity.
Publié le : 2004-12-14
Classification:  Cayley graph,  small cancellation groups,  generic properties of groups,  05C25,  20F06,  20P05
@article{1102689123,
     author = {Arzhantseva, G. N. and Cherix, P.-A.},
     title = {On the Cayley graph of a generic finitely presented group},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {1},
     year = {2004},
     pages = { 589-601},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1102689123}
}
Arzhantseva, G. N.; Cherix, P.-A. On the Cayley graph of a generic finitely presented group. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, pp.  589-601. http://gdmltest.u-ga.fr/item/1102689123/