In this paper we prove the global existence and study decay property of the solutions to the initial
boundary value problem for the solutions to the quasilinear wave equation of Kirchhoff-Carrier type
with a general weakly nonlinear dissipative term by constructing a stable set in $H^{2}\bigcap
H_{0}^{1}$. }
Publié le : 2004-12-14
Classification:
Quasilinear wave equation,
Global existence,
Asymptotic behavior,
nonlinear dissipative term,
multiplier method,
35B40,
35L70,
35B37
@article{1102689121,
author = {Benaissa, Abbes and Rahmani, Leila},
title = {Global existence and energy decay of solutions for Kirchhoff-Carrier equations with weakly
nonlinear dissipation},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {11},
number = {1},
year = {2004},
pages = { 547-574},
language = {en},
url = {http://dml.mathdoc.fr/item/1102689121}
}
Benaissa, Abbes; Rahmani, Leila. Global existence and energy decay of solutions for Kirchhoff-Carrier equations with weakly
nonlinear dissipation. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, pp. 547-574. http://gdmltest.u-ga.fr/item/1102689121/