Euler's constants for the Selberg and the Dedekind zeta functions
Hashimoto, Yasufumi ; Iijima, Yasuyuki ; Kurokawa, Nobushige ; Wakayama, Masato
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, p. 493-516 / Harvested from Project Euclid
The purpose of this paper is to study an analogue of Euler's constant for the Selberg zeta functions of a compact Riemann surface and the Dedekind zeta function of an algebraic number field. Especially, we establish similar expressions of such Euler's constants as de la Vall\'ee-Poussin obtained in 1896 for the Riemann zeta function. We also discuss, so to speak, higher Euler's constants and establish certain formulas concerning the power sums of essential zeroes of these zeta functions similar to Riemann's explicit formula.
Publié le : 2004-12-14
Classification:  Euler's constant,  Selberg zeta function,  Dedekind zeta function,  11M06,  11M36
@article{1102689119,
     author = {Hashimoto, Yasufumi and Iijima, Yasuyuki and Kurokawa, Nobushige and Wakayama, Masato},
     title = {Euler's constants for
the Selberg and the Dedekind zeta functions},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {1},
     year = {2004},
     pages = { 493-516},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1102689119}
}
Hashimoto, Yasufumi; Iijima, Yasuyuki; Kurokawa, Nobushige; Wakayama, Masato. Euler's constants for
the Selberg and the Dedekind zeta functions. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, pp.  493-516. http://gdmltest.u-ga.fr/item/1102689119/