CONVERGENCE OF THE KÄHLER-RICCI FLOW ON NONCOMPACT KÄHLER MANIFOLDS
Chau, Albert
J. Differential Geom., Tome 66 (2004) no. 3, p. 211-232 / Harvested from Project Euclid
We study the Kähler-Ricci flow on noncompact Kähler manifolds and provide conditions under which the flow has a long time solution converging to a complete negative Kähler-Einstein metric. We also study the complex parabolic Monge-Ampère equation.
Publié le : 2004-02-14
Classification: 
@article{1102538610,
     author = {Chau, Albert},
     title = {CONVERGENCE OF THE K\"AHLER-RICCI FLOW ON
NONCOMPACT K\"AHLER MANIFOLDS},
     journal = {J. Differential Geom.},
     volume = {66},
     number = {3},
     year = {2004},
     pages = { 211-232},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1102538610}
}
Chau, Albert. CONVERGENCE OF THE KÄHLER-RICCI FLOW ON
NONCOMPACT KÄHLER MANIFOLDS. J. Differential Geom., Tome 66 (2004) no. 3, pp.  211-232. http://gdmltest.u-ga.fr/item/1102538610/