THE HILBERT COMPACTIFICATION OF THE UNIVERSAL MODULI SPACE OF SEMISTABLE VECTOR BUNDLES OVER SMOOTH CURVES
Schmitt, Alexander
J. Differential Geom., Tome 66 (2004) no. 3, p. 169-209 / Harvested from Project Euclid
We construct the Hilbert compactification of the universal moduli space of semistable vector bundles over smooth curves. The Hilbert compactification is the GIT quotient of some open part of an appropriate Hilbert scheme of curves in a Graβmannian. It has all the properties asked for by Teixidor.
Publié le : 2004-02-14
Classification: 
@article{1102538609,
     author = {Schmitt, Alexander},
     title = {THE HILBERT COMPACTIFICATION OF THE
UNIVERSAL MODULI SPACE OF SEMISTABLE
VECTOR BUNDLES OVER SMOOTH CURVES},
     journal = {J. Differential Geom.},
     volume = {66},
     number = {3},
     year = {2004},
     pages = { 169-209},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1102538609}
}
Schmitt, Alexander. THE HILBERT COMPACTIFICATION OF THE
UNIVERSAL MODULI SPACE OF SEMISTABLE
VECTOR BUNDLES OVER SMOOTH CURVES. J. Differential Geom., Tome 66 (2004) no. 3, pp.  169-209. http://gdmltest.u-ga.fr/item/1102538609/