On a subvariety of the moduli space
Cirre, Francisco Javier
Rev. Mat. Iberoamericana, Tome 20 (2004) no. 1, p. 953-960 / Harvested from Project Euclid
We give an explicit description of a non-normal irreducible subvariety of the moduli space of Riemann surfaces of genus $3$ characterized by a non-cyclic group action. Defining equations of a family of curves representing non-normal points of this subvariety are computed. We also find defining equations of the family of hyperelliptic curves of genus $3$ whose full automorphism group is $C_2\times C_4$. This completes the list of full automorphism groups of hyperelliptic curves.
Publié le : 2004-10-14
Classification:  Riemann surface,  moduli space,  automorphism group,  14H,  30F,  32G
@article{1098885439,
     author = {Cirre, Francisco Javier},
     title = {On a subvariety of the moduli space},
     journal = {Rev. Mat. Iberoamericana},
     volume = {20},
     number = {1},
     year = {2004},
     pages = { 953-960},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1098885439}
}
Cirre, Francisco Javier. On a subvariety of the moduli space. Rev. Mat. Iberoamericana, Tome 20 (2004) no. 1, pp.  953-960. http://gdmltest.u-ga.fr/item/1098885439/