On the discreteness of the spectra of the Dirichlet and Neumann $p$-biharmonic problems
Benedikt, Jiří
Abstr. Appl. Anal., Tome 2004 (2004) no. 1, p. 777-792 / Harvested from Project Euclid
We are interested in a nonlinear boundary value problem for $(|u''|^{p-2}u'')''=\lambda|u|^{p-2}u$ in $[0,1]$ , $p>1$ , with Dirichlet and Neumann boundary conditions. We prove that eigenvalues of the Dirichlet problem are positive, simple, and isolated, and form an increasing unbounded sequence. An eigenfunction, corresponding to the $n$ th eigenvalue, has precisely $n-1$ zero points in $(0,1)$ . Eigenvalues of the Neumann problem are nonnegative and isolated, $0$ is an eigenvalue which is not simple, and the positive eigenvalues are simple and they form an increasing unbounded sequence. An eigenfunction, corresponding to the $n$ th positive eigenvalue, has precisely $n+1$ zero points in $(0,1)$ .
Publié le : 2004-09-30
Classification:  34B15,  34C10,  47J10
@article{1097458587,
     author = {Benedikt, Ji\v r\'\i },
     title = {On the discreteness of the spectra of the Dirichlet and Neumann $p$-biharmonic problems},
     journal = {Abstr. Appl. Anal.},
     volume = {2004},
     number = {1},
     year = {2004},
     pages = { 777-792},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1097458587}
}
Benedikt, Jiří. On the discreteness of the spectra of the Dirichlet and Neumann $p$-biharmonic problems. Abstr. Appl. Anal., Tome 2004 (2004) no. 1, pp.  777-792. http://gdmltest.u-ga.fr/item/1097458587/