Almost everywhere domination
Dobrinen, Natasha L. ; Simpson, Stephen G.
J. Symbolic Logic, Tome 69 (2004) no. 1, p. 914-922 / Harvested from Project Euclid
A Turing degree a is said to be almost everywhere dominating if, for almost all X∈ 2ω with respect to the “fair coin” probability measure on 2ω, and for all g : ω→ω Turing reducible to X, there exists f : ω→ω of Turing degree a which dominates g. We study the problem of characterizing the almost everywhere dominating Turing degrees and other, similarly defined classes of Turing degrees. We relate this problem to some questions in the reverse mathematics of measure theory.
Publié le : 2004-09-14
Classification: 
@article{1096901775,
     author = {Dobrinen, Natasha L. and Simpson, Stephen G.},
     title = {Almost everywhere domination},
     journal = {J. Symbolic Logic},
     volume = {69},
     number = {1},
     year = {2004},
     pages = { 914-922},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1096901775}
}
Dobrinen, Natasha L.; Simpson, Stephen G. Almost everywhere domination. J. Symbolic Logic, Tome 69 (2004) no. 1, pp.  914-922. http://gdmltest.u-ga.fr/item/1096901775/