Dividing in the algebra of compact operators
Berenstein, Alexander
J. Symbolic Logic, Tome 69 (2004) no. 1, p. 817-829 / Harvested from Project Euclid
We interpret the algebra of finite rank operators as imaginaries inside a Hilbert space. We prove that the Hilbert space enlarged with these imaginaries has built-in canonical bases.
Publié le : 2004-09-14
Classification: 
@article{1096901769,
     author = {Berenstein, Alexander},
     title = {Dividing in the algebra of compact operators},
     journal = {J. Symbolic Logic},
     volume = {69},
     number = {1},
     year = {2004},
     pages = { 817-829},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1096901769}
}
Berenstein, Alexander. Dividing in the algebra of compact operators. J. Symbolic Logic, Tome 69 (2004) no. 1, pp.  817-829. http://gdmltest.u-ga.fr/item/1096901769/