Solutions for nonlinear variational inequalities with a nonsmooth potential
Filippakis, Michael E. ; Papageorgiou, Nikolaos S.
Abstr. Appl. Anal., Tome 2004 (2004) no. 1, p. 635-649 / Harvested from Project Euclid
First we examine a resonant variational inequality driven by the $p$ -Laplacian and with a nonsmooth potential. We prove the existence of a nontrivial solution. Then we use this existence theorem to obtain nontrivial positive solutions for a class of resonant elliptic equations involving the $p$ -Laplacian and a nonsmooth potential. Our approach is variational based on the nonsmooth critical point theory for functionals of the form $\varphi=\varphi_1+\varphi_2$ with $\varphi_1$ locally Lipschitz and $\varphi_2$ proper, convex, lower semicontinuous.
Publié le : 2004-08-10
Classification:  35J85,  35J20
@article{1095684285,
     author = {Filippakis, Michael E. and Papageorgiou, Nikolaos S.},
     title = {Solutions for nonlinear variational inequalities with a nonsmooth potential},
     journal = {Abstr. Appl. Anal.},
     volume = {2004},
     number = {1},
     year = {2004},
     pages = { 635-649},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1095684285}
}
Filippakis, Michael E.; Papageorgiou, Nikolaos S. Solutions for nonlinear variational inequalities with a nonsmooth potential. Abstr. Appl. Anal., Tome 2004 (2004) no. 1, pp.  635-649. http://gdmltest.u-ga.fr/item/1095684285/