Equivariant symplectic Hodge theory and the d G δ-lemma
Lin, Yi ; Sjamaar, Reyer
J. Symplectic Geom., Tome 2 (2004) no. 2, p. 267-278 / Harvested from Project Euclid
Consider a Hamiltonian action of a compact Lie group on a symplectic manifold which has the strong Lefschetz property. We establish an equivariant version of the Merkulov- Guillemin dδ-lemma and an improved version of the Kirwan- Ginzburg equivariant formality theorem, which says that every cohomology class has a canonical equivariant extension.
Publié le : 2004-08-14
Classification: 
@article{1094072007,
     author = {Lin, Yi and Sjamaar, Reyer},
     title = {Equivariant symplectic Hodge theory and
the d<sub>
 G
</sub>$\delta$-lemma},
     journal = {J. Symplectic Geom.},
     volume = {2},
     number = {2},
     year = {2004},
     pages = { 267-278},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1094072007}
}
Lin, Yi; Sjamaar, Reyer. Equivariant symplectic Hodge theory and
the d
 G
δ-lemma. J. Symplectic Geom., Tome 2 (2004) no. 2, pp.  267-278. http://gdmltest.u-ga.fr/item/1094072007/