A note on mean curvature, Maslov class and symplectic area of Lagrangian immersions
Cieliebak, Kai ; Goldstein, Edward
J. Symplectic Geom., Tome 2 (2004) no. 2, p. 261-266 / Harvested from Project Euclid
In this note we prove a simple relation between the mean curvature form, symplectic area, and the Maslov class of a Lagrangian immersion in a Kähler-Einstein manifold. An immediate consequence is that in Kähler-Einstein manifolds with positive scalar curvature, minimal Lagrangian immersions are monotone.
Publié le : 2004-08-14
Classification: 
@article{1094072006,
     author = {Cieliebak, Kai and Goldstein, Edward},
     title = {A note on mean curvature, Maslov class and
symplectic area of Lagrangian immersions},
     journal = {J. Symplectic Geom.},
     volume = {2},
     number = {2},
     year = {2004},
     pages = { 261-266},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1094072006}
}
Cieliebak, Kai; Goldstein, Edward. A note on mean curvature, Maslov class and
symplectic area of Lagrangian immersions. J. Symplectic Geom., Tome 2 (2004) no. 2, pp.  261-266. http://gdmltest.u-ga.fr/item/1094072006/