Limit-point criteria for superlinear differential equations
Mustafa, Octavian G. ; Rogovchenko, Yuri V.
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, p. 431-440 / Harvested from Project Euclid
For a nonlinear differential equation $x^{\prime\prime}+a(t)f(x)=0,$ we obtain limit-point criteria by proving first stronger results which guarantee nonexistence of nontrivial bounded (uniformly continuous) $L^{2}$-solutions under milder restrictions on the coefficient $a(t)$ and nonlinearity $f(x)$.
Publié le : 2004-09-14
Classification:  Nonlinear differential equations,  second-order,  square integrable solutions,  bounded solutions,  asymptotic behavior,  limit-point/limit-circle classification,  34B29,  47E05,  34A34,  34C11
@article{1093351382,
     author = {Mustafa, Octavian G. and Rogovchenko, Yuri V.},
     title = {Limit-point criteria for superlinear differential equations},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {1},
     year = {2004},
     pages = { 431-440},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1093351382}
}
Mustafa, Octavian G.; Rogovchenko, Yuri V. Limit-point criteria for superlinear differential equations. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, pp.  431-440. http://gdmltest.u-ga.fr/item/1093351382/