Holomorphic Cliffordian product
Laville, Guy
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, p. 375-390 / Harvested from Project Euclid
Let $\mathbb R_{0,n}$ be the Clifford algebra of the antieuclidean vector space of dimension $n$. The aim is to built a function theory analogous to the one in the $\mathbb C$ case. In the latter case, the product of two holomorphic functions is holomorphic, this fact is, of course, of paramount importance. Then it is necessary to define a product for functions in the Clifford context. But, non-commutativity is inconciliable with product of functions. Here we introduce a product which is commutative and we compute some examples explicitely.
Publié le : 2004-09-14
Classification:  Non-commutative analysis,  Clifford algebra,  symmetric algebra,  Clifford analysis,  product,  holomorphic Cliffordian functions,  30Gxx,  30G35,  15A66
@article{1093351379,
     author = {Laville, Guy},
     title = {Holomorphic Cliffordian product},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {1},
     year = {2004},
     pages = { 375-390},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1093351379}
}
Laville, Guy. Holomorphic Cliffordian product. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, pp.  375-390. http://gdmltest.u-ga.fr/item/1093351379/