Meromorphic function of infinite order with maximum deficiency sum
Xiong, Weiling
Kodai Math. J., Tome 27 (2004) no. 1, p. 105-113 / Harvested from Project Euclid
In this paper we prove the following theorem: % Let $f(z)$ be a meromorphic function of infinite order. If $ \sum \limits_{a \neq \infty} \delta (a,f) + \delta (\infty, f) = 2,$ then for each positive integer $k$, we have % $K(f^{(k)}) = \frac{2k(1 - \delta(\infty, f))} {1 + k - k\delta (\infty, f)},$ % where % $ K(f^{(k)}) = \lim \limits_{r \rightarrow \infty } (N(r, 1 / f^{(k)}) + N(r,f^{(k)})) / T(r,f^{(k)})$ exists. % This result improves the results by S. K. Singh and V. N. Kulkarni [1] and Mingliang Fang [2].
Publié le : 2004-06-14
Classification: 
@article{1093351318,
     author = {Xiong, Weiling},
     title = {Meromorphic function of infinite order with maximum deficiency sum},
     journal = {Kodai Math. J.},
     volume = {27},
     number = {1},
     year = {2004},
     pages = { 105-113},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1093351318}
}
Xiong, Weiling. Meromorphic function of infinite order with maximum deficiency sum. Kodai Math. J., Tome 27 (2004) no. 1, pp.  105-113. http://gdmltest.u-ga.fr/item/1093351318/