Constructing ω-stable Structures: Rank k-fields
Baldwin, John T. ; Holland, Kitty
Notre Dame J. Formal Logic, Tome 44 (2003) no. 1, p. 139-147 / Harvested from Project Euclid
Theorem: For every k, there is an expansion of the theory of algebraically closed fields (of any fixed characteristic) which is almost strongly minimal with Morley rank k.
Publié le : 2003-07-14
Classification:  finite rank expansion,  algebraically closed fields,  model completeness,  03C35,  03C45,  03C60
@article{1091030852,
     author = {Baldwin, John T. and Holland, Kitty},
     title = {Constructing $\omega$-stable Structures: Rank k-fields},
     journal = {Notre Dame J. Formal Logic},
     volume = {44},
     number = {1},
     year = {2003},
     pages = { 139-147},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1091030852}
}
Baldwin, John T.; Holland, Kitty. Constructing ω-stable Structures: Rank k-fields. Notre Dame J. Formal Logic, Tome 44 (2003) no. 1, pp.  139-147. http://gdmltest.u-ga.fr/item/1091030852/