A Kawamata-Viehweg Vanishing Theorem on Compact Kähler Manifolds
Demailly, Jean-Pierre ; Peternell, Thomas
J. Differential Geom., Tome 63 (2003) no. 1, p. 231-277 / Harvested from Project Euclid
We prove a Kawamata-Viehweg vanishing theorem on a normal compact Kähler space X: if L is a nef line bundle with L2 ≠ 0, then H>q(X,KX+L) = 0 for q ≥ dim X − 1. As an application we complete a part of the abundance theorem for minimal Kähler threefolds: if X is a minimal Kähler threefold, then the Kodaira dimension κ(X) is nonnegative.
Publié le : 2003-01-14
Classification: 
@article{1090426678,
     author = {Demailly, Jean-Pierre and Peternell, Thomas},
     title = {A Kawamata-Viehweg Vanishing Theorem on Compact K\"ahler Manifolds},
     journal = {J. Differential Geom.},
     volume = {63},
     number = {1},
     year = {2003},
     pages = { 231-277},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1090426678}
}
Demailly, Jean-Pierre; Peternell, Thomas. A Kawamata-Viehweg Vanishing Theorem on Compact Kähler Manifolds. J. Differential Geom., Tome 63 (2003) no. 1, pp.  231-277. http://gdmltest.u-ga.fr/item/1090426678/