Isospectrality of Flat Lorentz 3-Manifolds
Drumm, Todd A. ; Goldman, William M.
J. Differential Geom., Tome 57 (2001) no. 2, p. 457-465 / Harvested from Project Euclid
For isometric actions on flat Lorentz (2+1)-space whose linear part is a purely hyperbolic subgroup of O(2, 1), Margulis defined a marked signed Lorentzian length spectrum invariant closely related to properness and freeness of the action. In this paper we show that, for fixed linear part, this invariant completely determines the conjugacy class of the action. We also extend this result to groups containing parabolics.
Publié le : 2001-07-14
Classification: 
@article{1090348355,
     author = {Drumm, Todd A. and Goldman, William M.},
     title = {Isospectrality of Flat Lorentz 3-Manifolds},
     journal = {J. Differential Geom.},
     volume = {57},
     number = {2},
     year = {2001},
     pages = { 457-465},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1090348355}
}
Drumm, Todd A.; Goldman, William M. Isospectrality of Flat Lorentz 3-Manifolds. J. Differential Geom., Tome 57 (2001) no. 2, pp.  457-465. http://gdmltest.u-ga.fr/item/1090348355/