p -variation of strong Markov processes
Manstavičius, Martynas
Ann. Probab., Tome 32 (2004) no. 1A, p. 2053-2066 / Harvested from Project Euclid
Let ξt, t∈[0,T], be a strong Markov process with values in a complete separable metric space (X,ρ) and with transition probability function Ps,t(x,dy), 0≤s≤t≤T, x∈X. For any h∈[0,T] and a>0, consider the function ¶ α(h,a)=sup{Ps,t(x,{y:ρ(x,y)≥a}):x∈X,0≤s≤t≤(s+h)∧T}. ¶ It is shown that a certain growth condition on α(h,a), as a↓0 and h stays fixed, implies the almost sure boundedness of the p-variation of ξt, where p depends on the rate of growth.
Publié le : 2004-07-14
Classification:  Strong Markov process,  Markov time,  p-variation,  transition probabilities,  60J25,  60G17,  60J35,  60G40
@article{1089808419,
     author = {Manstavi\v cius, Martynas},
     title = {p
-variation of strong Markov processes},
     journal = {Ann. Probab.},
     volume = {32},
     number = {1A},
     year = {2004},
     pages = { 2053-2066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1089808419}
}
Manstavičius, Martynas. p
-variation of strong Markov processes. Ann. Probab., Tome 32 (2004) no. 1A, pp.  2053-2066. http://gdmltest.u-ga.fr/item/1089808419/