Nonparametric Bayesian Data Analysis
Müller, Peter ; Quintana, Fernando A.
Statist. Sci., Tome 19 (2004) no. 1, p. 95-110 / Harvested from Project Euclid
We review the current state of nonparametric Bayesian inference. The discussion follows a list of important statistical inference problems, including density estimation, regression, survival analysis, hierarchical models and model validation. For each inference problem we review relevant nonparametric Bayesian models and approaches including Dirichlet process (DP) models and variations, Pólya trees, wavelet based models, neural network models, spline regression, CART, dependent DP models and model validation with DP and Pólya tree extensions of parametric models.
Publié le : 2004-02-14
Classification:  Dirichlet process,  regression,  density estimation,  survival analysis,  Pólya tree,  random probability model (RPM)
@article{1089808275,
     author = {M\"uller, Peter and Quintana, Fernando A.},
     title = {Nonparametric Bayesian Data Analysis},
     journal = {Statist. Sci.},
     volume = {19},
     number = {1},
     year = {2004},
     pages = { 95-110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1089808275}
}
Müller, Peter; Quintana, Fernando A. Nonparametric Bayesian Data Analysis. Statist. Sci., Tome 19 (2004) no. 1, pp.  95-110. http://gdmltest.u-ga.fr/item/1089808275/