Concentration of permanent estimators for certain large matrices
Friedland, Shmuel ; Rider, Brian ; Zeitouni, Ofer
Ann. Appl. Probab., Tome 14 (2004) no. 1, p. 1559-1576 / Harvested from Project Euclid
Let An=(aij)i,j=1n be an n×n positive matrix with entries in [a,b], 0ij} are i.i.d. N(0,1) random variables. We show that for large n, $\det (X_{n}^{T}X_{n})$ concentrates sharply at the permanent of An, in the sense that $n^{-1}\log (\det(X_{n}^{T}X_{n})/\operatorname {per}A_{n})\to_{n\to\infty}0$ in probability.
Publié le : 2004-08-14
Classification:  Permanent,  concentration of measure,  random matrices,  15A52
@article{1089736296,
     author = {Friedland, Shmuel and Rider, Brian and Zeitouni, Ofer},
     title = {Concentration of permanent estimators for certain large matrices},
     journal = {Ann. Appl. Probab.},
     volume = {14},
     number = {1},
     year = {2004},
     pages = { 1559-1576},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1089736296}
}
Friedland, Shmuel; Rider, Brian; Zeitouni, Ofer. Concentration of permanent estimators for certain large matrices. Ann. Appl. Probab., Tome 14 (2004) no. 1, pp.  1559-1576. http://gdmltest.u-ga.fr/item/1089736296/