Local limit theory and large deviations for supercritical Branching processes
Ney, Peter E. ; Vidyashankar, Anand N.
Ann. Appl. Probab., Tome 14 (2004) no. 1, p. 1135-1166 / Harvested from Project Euclid
In this paper we study several aspects of the growth of a supercritical Galton–Watson process {Zn:n≥1}, and bring out some criticality phenomena determined by the Schröder constant. We develop the local limit theory of Zn, that is, the behavior of P(Zn=vn) as vn↗∞, and use this to study conditional large deviations of {YZn:n≥1}, where Yn satisfies an LDP, particularly of {Zn−1Zn+1:n≥1} conditioned on Zn≥vn.
Publié le : 2004-08-14
Classification:  Branching processes,  large deviations,  local limit theorems.,  60J80,  60F10
@article{1089736280,
     author = {Ney, Peter E. and Vidyashankar, Anand N.},
     title = {Local limit theory and large deviations for supercritical Branching processes},
     journal = {Ann. Appl. Probab.},
     volume = {14},
     number = {1},
     year = {2004},
     pages = { 1135-1166},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1089736280}
}
Ney, Peter E.; Vidyashankar, Anand N. Local limit theory and large deviations for supercritical Branching processes. Ann. Appl. Probab., Tome 14 (2004) no. 1, pp.  1135-1166. http://gdmltest.u-ga.fr/item/1089736280/