The operator $B^*L$ for the wave equation with Dirichlet control
Lasiecka, I. ; Triggiani, R.
Abstr. Appl. Anal., Tome 2004 (2004) no. 1, p. 625-634 / Harvested from Project Euclid
In the case of the wave equation, defined on a sufficiently smooth bounded domain of arbitrary dimension, and subject to Dirichlet boundary control, the operator $B^*L$ from boundary to boundary is bounded in the $L_2$ -sense. The proof combines hyperbolic differential energy methods with a microlocal elliptic component.
Publié le : 2004-06-29
Classification:  35Lxx,  35Qxx,  93-xx
@article{1089229151,
     author = {Lasiecka, I. and Triggiani, R.},
     title = {The operator $B^*L$ for the wave equation with
Dirichlet control},
     journal = {Abstr. Appl. Anal.},
     volume = {2004},
     number = {1},
     year = {2004},
     pages = { 625-634},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1089229151}
}
Lasiecka, I.; Triggiani, R. The operator $B^*L$ for the wave equation with
Dirichlet control. Abstr. Appl. Anal., Tome 2004 (2004) no. 1, pp.  625-634. http://gdmltest.u-ga.fr/item/1089229151/