On certain comparison theorems for half-linear dynamic equations on time scales
Řehák, Pavel
Abstr. Appl. Anal., Tome 2004 (2004) no. 1, p. 551-565 / Harvested from Project Euclid
We obtain comparison theorems for the second-order half-linear dynamic equation $\big[r(t)\Phi \big(y^{\Delta}\big)\big]^{\Delta}+p(t)\Phi\big(y\sig\big)=0,$ , where $\Phi(x)=|x|^{\alpha-1}\mathrm{sgn} x$ with $\alpha>1$ . In particular, it is shown that the nonoscillation of the previous dynamic equation is preserved if we multiply the coefficient $p(t)$ by a suitable function $q(t)$ and lower the exponent $\alpha$ in the nonlinearity $\Phi$ , under certain assumptions. Moreover, we give a generalization of Hille-Wintner comparison theorem. In addition to the aspect of unification and extension, our theorems provide some new results even in the continuous and the discrete case.
Publié le : 2004-06-29
Classification:  34C10,  39A10
@article{1089229145,
     author = {\v Reh\'ak, Pavel},
     title = {On certain comparison theorems for half-linear
dynamic equations on time scales},
     journal = {Abstr. Appl. Anal.},
     volume = {2004},
     number = {1},
     year = {2004},
     pages = { 551-565},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1089229145}
}
Řehák, Pavel. On certain comparison theorems for half-linear
dynamic equations on time scales. Abstr. Appl. Anal., Tome 2004 (2004) no. 1, pp.  551-565. http://gdmltest.u-ga.fr/item/1089229145/