Rankin-Selberg L-functions in the level aspect
Kowalski, E. ; Michel, P. ; VanderKam, J.
Duke Math. J., Tome 115 (2002) no. 1, p. 123-191 / Harvested from Project Euclid
In this paper we calculate the asymptotics of various moments of the central values of Rankin-Selberg convolution L-functions of large level, thus generalizing the results and methods of W. Duke, J. Friedlander, and H. Iwaniec and of the authors. Consequences include convexity-breaking bounds, nonvanishing of a positive proportion of central values, and linear independence results for certain Hecke operators.
Publié le : 2002-07-15
Classification:  11F66,  11G40
@article{1087575359,
     author = {Kowalski, E. and Michel, P. and VanderKam, J.},
     title = {Rankin-Selberg L-functions in the level aspect},
     journal = {Duke Math. J.},
     volume = {115},
     number = {1},
     year = {2002},
     pages = { 123-191},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1087575359}
}
Kowalski, E.; Michel, P.; VanderKam, J. Rankin-Selberg L-functions in the level aspect. Duke Math. J., Tome 115 (2002) no. 1, pp.  123-191. http://gdmltest.u-ga.fr/item/1087575359/