Localization for one-dimensional, continuum, Bernoulli-Anderson models
Damanik, David ; Sims, Robert ; Stolz, Günter
Duke Math. J., Tome 115 (2002) no. 1, p. 59-100 / Harvested from Project Euclid
We use scattering theoretic methods to prove strong dynamical and exponential localization for one-dimensional, continuum, Anderson-type models with singular distributions; in particular, the case of a Bernoulli distribution is covered. The operators we consider model alloys composed of at least two distinct types of randomly dispersed atoms. Our main tools are the reflection and transmission coefficients for compactly supported single-site perturbations of a periodic background which we use to verify the necessary hypotheses of multi-scale analysis. We show that nonreflectionless single sites lead to a discrete set of exceptional energies away from which localization occurs.
Publié le : 2002-07-15
Classification:  82B44,  34L40,  47B80
@article{1087575357,
     author = {Damanik, David and Sims, Robert and Stolz, G\"unter},
     title = {Localization for one-dimensional, continuum, Bernoulli-Anderson models},
     journal = {Duke Math. J.},
     volume = {115},
     number = {1},
     year = {2002},
     pages = { 59-100},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1087575357}
}
Damanik, David; Sims, Robert; Stolz, Günter. Localization for one-dimensional, continuum, Bernoulli-Anderson models. Duke Math. J., Tome 115 (2002) no. 1, pp.  59-100. http://gdmltest.u-ga.fr/item/1087575357/